
Docking Task for Nonholonomic Mobile Robots
Olivier Lefebvre, Florent Lamiraux

LAAS-CNRS
7 avenue du Colonel Roche

Toulouse, France
[olefebvr, florent]@laas.fr

Abstract— This paper presents a framework for precise park-
ing for nonholonomic mobile robots: the docking task. It consists
in following a planned trajectory and reaching a docking config-
uration, defined relatively to the environment. The trajectory is
deformed in order to reach the docking configuration, to avoid
obstacles and to keep the nonholonomic constraints satisfied.
A generic framework to compute the docking configuration
is presented. Then we give the principle of a nonholonomic
path deformation method that was used to deform the planned
trajectory towards the docking configuration. This framework
has been tested on a real robot with a trailer in a realistic
scenario.

WareHouse

unloading
platform

Fig. 1. A docking task for a truck: The final configuration is defined relatively
to the unloading platform and to the white lines on the ground. The truck must
move autonomously to this docking configuration.

I. PROBLEM STATEMENT AND RELATED WORK

The ability for a nonholonomic mobile robot to follow
a planned trajectory while avoiding obstacles is of great
interest since common vehicles are subjected to nonholonomic
constraints. Research carried out on nonholonomic systems
have potential applications in the Intelligent Transportation
Systems area, such as automatic road, automatic parking or
truck parking facilities.

In all these applications, a good localization of the system
is essential if we want to follow the planned trajectory.
Nevertheless it can happen that the trajectory needs to be
adapted online. For instance if we want to avoid unexpected
obstacles that were not in the map used to plan the trajectory.
Moreover, the end of the trajectory may also need to be
adapted at the parking stage, for several reasons:
• the parking process can require a precision that the

localization is not able to provide,

• the map used for planning may be too imprecise to be
employed to park in.

• the parking position may have changed.
All these elements converge towards the same idea: defining

the parking configuration in the global frame does not allow
for parking in practical applications. The parking configuration
must be defined relatively to the environment. For instance,
one can define a car parking lot as: “three white lines on the
ground. One on each side of the car and one in front of it”
(see figure 2). That is, a parking configuration can be defined
indirectly through a set of landmarks to be perceived from this
configuration. We call this set of landmarks a docking pattern.

In this paper we address the problem of precise motion
of nonholonomic systems during the parking stage. Our ap-
proach takes advantage of a nonholonomic path deformation
method [6] to reach a final configuration defined relatively to
the environment.

The idea of defining a position as a desired sensor per-
ception is the basis of sensor-based control. An instance
of this approach is visual servoing [2], [5]. The objective
is the positioning of a mobile camera with regard to the
environment, with a task directly expressed as an error with
respect to a goal image. The control is derived using the task
function approach [8]. It has been extended to nonholonomic
mobile robots in [11] by introducing additional degrees-
of-freedom. The nonholonomic Camera-Space Manipulation
(CSM) framework also addresses the issue of visual control
of a nonholonomic mobile robot [10]. The extension to Mobile
Camera-Space Manipulation (MCSM) [9] enables the cameras
to be embedded on the robot. However it does not deal
with systems with several nonholonomic constraints. A more
generic framework for nonholonomic systems control has
recently been proposed in [7]. Another advantage of our
approach is that it can be coupled with a local obstacle
avoidance method, as shown later.

To reach the final parking configuration, one could think
about re-planning a trajectory using the current perception.
This problem of reaching a constrained parking configura-
tion is very similar to the extensively studied problem of
part disassembly [3], [4]. However these works do not take
into account nonholonomic systems. Moreover re-planning a
trajectory using the current perception would be very time
consuming. That is the reason why we will try to locally
deform the reference trajectory rather than launch a global
re-planning.

The paper is organized as follows: in section II we specify
the concept of a docking task that allows to define the
docking configuration with respect to a set of landmarks in the

environment (the docking pattern). In section III, we explain
how to compute the docking configuration given a sensor
perception and a docking pattern, using standard Kalman
filtering techniques. In section IV we present the method
used to deform the reference trajectory in order to avoid
obstacles, to reach the docking configuration and to keep the
nonholonomic constraints satisfied. Eventually, in section V,
we present experimental results with a real robot towing a
trailer.

II. DOCKING TASK

Autonomous motion for a mobile robot is generally ad-
dressed in two steps. First a collision-free trajectory is planned
within a model of the environment. Then the robot follows
this reference trajectory and adapts it locally in order to avoid
unexpected obstacles.

As explained in the introduction, this technique does not
allow precise parking, since it does not adapt the parking
configuration to the environment. The concept of docking task
addresses this issue.

patterndocking laser sensor

docking pattern

Fig. 2. Docking pattern. It consists in a set of landmarks defined relatively
to a sensor. On the left image, the docking pattern defines a parking lot for
a CyCab car. On the right image the docking pattern is defined relatively to
the laser sensor mounted on the trailer of a robot.

A docking task is a mission given to a robot that consists in
following a planned trajectory and reaching a docking config-
uration. The docking configuration is not defined beforehand
as a known robot location. On the contrary it is specified
as a set of sensor perceptions from this configuration. The
set of landmarks to be perceived when the robot is at the
docking configuration is called a docking pattern. Figure 2
presents such docking patterns. On each image, the docking
configuration is represented relatively to the docking pattern.

Thus a docking task takes as input:
- a collision free trajectory planned within a model of the

environment
- a set of landmarks relative to the docking configuration:
the docking patterns.

Figure 3 illustrates the principle of a docking task. The robot
is following the trajectory planned from qinit to qend. Arriving
at the end, it detects the docking pattern in the environment
using its sensor. It must then:
• compute the docking configuration qdock defined as the

configuration where the docking pattern matches the
sensor perception,

• deform the trajectory to reach the docking configuration
while avoiding collisions and keeping the nonholonomic
constraints satisfied.

qend

map

docking
pattern

qinit

qdock

perception

Fig. 3. A trajectory planned for a robot towing a trailer, with a false
model of the environment. The docking pattern is a set of landmarks relative
to the docking configuration. The trajectory is deformed in order to avoid
obstacles, to keep nonholonomic constraints satisfied and to reach qdock: the
configuration where the docking pattern matches sensor perception.

III. DOCKING CONFIGURATION COMPUTATION

In the absence of any additional information, the docking
configuration is the last configuration of the planned trajectory.
Otherwise, the comparison between docking patterns and sen-
sors perceptions can be used to compute the docking config-
uration: i.e. the robot configuration where sensors perceptions
best match docking patterns. We use a classical Extended
Kalman filter approach with the observation step, the matching
step and the update step, to integrate this information.

A. Notations
1) Configurations and positions: Let C be the configuration

space of our system. A configuration of the robot is denoted by
q. Let qdock be the docking configuration, the configuration
we are computing in this section.

Let W represent the 3D workspace, with origin frame O.
The position and orientation of a frame F′ expressed in a frame
F can be represented by the homogeneous matrix xF′/F. A
frame F expressed in the workspace is simply denoted by
xF, representing the transformation from frame O to frame
F. We consider a multi-body robot equipped with n sensors
and we note xi(q) the position of sensor i when robot is at
configuration q. From now on, we refer to the sensor position
when robot is at docking configuration simply as xdock

i :

xdock
i = xi(qdock)

2) Observation function of a sensor: We focus now on a
single sensor. The current robot configuration is q and the
current sensor position is x(q). We are interested in computing
xdock.

Let l be a landmark1, represented by a nl dimensional real
vector. A landmark is defined relatively to the sensor position
when the robot is in docking configuration. That is a landmark
l is expressed in frame xdock:

l , l/xdock

Then for each sensor, we define a docking pattern as a set of
l landmarks L = {l1, l2, . . . , ll}.

Let p be a feature perceived2 by the sensor, and represented
by a np dimensional real vector. The perception is naturally

1l for landmark
2p for perception

acquired in sensor frame x(q). But for computation conve-
nience we need it expressed in the workspace W , that is in
frame O:

p , p/O

It is always possible to define a function TR that transforms
a perception expressed in frame x(q) into a perception ex-
pressed in frame O:

p/O = TR(x(q),p/x(q)) (1)

If the perceived feature p is a point for instance, the transfor-
mation function TR is simply the homogeneous matrix x(q).
Then we note P = {p1,p2, . . . ,pp} the set of p features
perceived by the sensor.

We define an observation function f that maps a sensor
position x and a landmark from L with a perception from P
as :

f : Rnl × SE(3) → Rnp

(l,x) 7→ p = f(l,x)
(2)

What is important to notice here is that the sensor position
xdock when the robot is at docking configuration is solution
of equation (2). Then, given a sensor docking position xdock,
the set of nm couples m = (lj ,pk) that satisfy equation (2)
is noted M. It is the set of matches landmark-perception.

We can define a batch observation function F that maps all
the elements ofM from a given sensor position x. Let L and
P be such that:

P = F (L,x) p1

...
pnm

 =

 f(l1,x)
...

f(ln
m

,x)

 (3)

Figure 4 presents these notations in a docking task scene
with two sensors. The robot being at a current configuration q,
it must compute the docking configuration qdock (right image).
At this docking configuration, the observation function (2) is
satisfied for all matched couples landmark-perception:(lji ,p

j
i),

for each sensor i. That is:
∀i, j

pj
i = f(xdock

i , lji)

3) Probabilistic framework: Because we do not measure
the true values of any of the preceding variables, we model
them as real random variables. Measure noises are assumed
normally distributed with zero mean.

Then equation (2) becomes:

p = f(l,x) + w (4)

Where w is the error on perception p. It is composed of a part
due to sensor noise and of a part due to sensor localization
error through equation (1). We note Vw its variance.

Supposing estimated values are close to real values, we can
linearize equation (4) around the estimated value. Then the
estimated observation and its variance are:

p̂ = f (̂l, x̂) (5)
Vp = JxVxJT

x + JlVlJ
T
l + Vw

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

1
11p

2

l12

l22
3p
2 x1

dock

x1 (q)

2p
2

2p1

qdock

x2 (q)

x2
dock

1p1

q end

2
endx (q)

1
endx (q)

q

l21

l

Fig. 4. Notation for the docking configuration computation in the case of two
sensors. On the left image, the couples landmark-perception are represented.
For each sensor i, landmark lji and perception pj

i match together. Landmarks
are carrier line of segments. The current robot configuration is q. Current
sensors positions are respectively x1(q) and x2(q). The sensors positions
at the end of the trajectory are x1(qend) and x2(qend) and they are not
solutions of observation function (2) for any couple (lji ,pj

i). On the right
image, sensors docking positions xdock

1 and xdock
2 are computed as solutions

of observation function (2).

Where Jx = df
dx

∣∣∣
x̂

is the Jacobian of f with respect to x

evaluated at x̂. And Jl = df
dl

∣∣∣̂
l

is the Jacobian of f with

respect to l evaluated at l̂.
This is because x, l and w are independent variables.

In a similar manner the batch function (3) becomes

P = F (L,x) + W (6)

Where W is equal to (w1, . . . ,wnm

)T . The estimated obser-
vation vector P̂ and its covariance matrix VP are computed
similarly to equation (5).

One must notice that:
• x and L are independent variables since (∀lj ∈ L) : x

and lj are independent.
• the covariance matrix VW is not diagonal since obser-

vation noises are correlated through equation (1).
• the covariance matrix VL of the docking pattern ex-

presses an a priori knowledge of the docking task.
• x, L and W are independent variables.
The robot localization is known through a noisy process,

as for its internal configuration variables. Thus q̂ represents
an estimate of the current robot configuration, used in equa-
tion (1).

The docking configuration qdock, which is the variable of
interest in this section, is modeled as a random variable. The
a priori estimated value of qdock is the last configuration
of the planned trajectory. We note q	 this a priori docking
configuration:

q̂	 = qend (7)

Its variance is denoted by Vq	 and is a parameter of the
docking task.

B. Matching

Arriving close to the a priori docking configuration q̂	,
the robot must determine for each sensor i which elements
perceived correspond to elements of the docking pattern. This
matching step consists in finding for each sensor i the setMi

of couples mi = (lji ,p
k
i) landmark-perception that may verify

equation (2).
Because the real values of the variables are unknown we

can use only the estimated values. Thus equation (2) is never
exactly satisfied and we are bound to find the couples that
“best” match. The criterion we use to evaluate the likelihood
of a match is the Mahalanobis distance between the expected
perception and the actual perception. The expected perception
p̂j of the landmark l̂j from the sensor position x̂ is given by
equation (5).

At this time, x̂ = x(q̂) = x(qend) is the sensor position at
the last configuration on the planned trajectory (see figure 4).
For a given perception pk, the Mahalanobis distance (Djk)2
is then defined as:

(Djk)2 = (pk − p̂j)T Vp(pk − p̂j) (8)

This distance follows a χ2
np distribution, with np the dimen-

sion of the observation vector p.

Algorithm 1 Matching algorithm
for each sensor i do

χ2
95 ← p(χ2

np = 95%)
x̂i ← xi(q̂)
Mi ← ∅
for each observation pk

i in Pi do
D2 ←∞
lbest ← ∅
for each landmark lji in Li do

p̂j
i ← equation (2), lji and x̂i

(Djk)2 ← equation (8), p̂j
i and pk

i

if ((Djk)2 < χ2
95 ∧ (Djk)2 < D2) then

lbest ← lji
D2 ← (Djk)2

end if
end for
if lbest 6= ∅ then

insert {pk
i , lbest} in Mi

end if
end for

end for

Algorithm 1 describes the matching. It returns for each
sensor i a listMi of couples landmark-perception that is used
in the update step.

C. Update step

Let x̂	i = xi(q̂) denote the sensor position at the a priori
docking configuration.

The update then is done in two steps :

• Each sensor position at the docking configuration is
updated using the matching step: x̂	i → x̂⊕i .

• then the docking configuration is updated using the
previous step: q̂	 → q̂⊕.

1) sensors docking positions update: The list of matching
couples (pi, lj) of each sensor i is used to update the prior
estimated sensor docking position x̂	i . The prior docking
configuration q̂	 is the last configuration on the planned
trajectory (equation (7)). We are looking for the a posteriori
value x⊕i : xi knowing the matching couples set Mi.

We note Zi the innovation vector of sensor i: Zi = Pi −
P̂i. It is the difference between the actual and the expected
perception. Using the notations of Kalman filter we have:

x̂⊕i = x̂	i + KxZi

V⊕
xi

= (I −KxJx)Vx	i

with the Kalman gain:

Kx = Vx	i
JT
x .(JxVx	i

JT
x + JLVLi

JT
L + VW)−1

And Jx = dFi

dx

∣∣
x̂	i

is the Jacobian of Fi with respect to x

evaluated at x̂	i . And JL = dFi

dL

∣∣
L̂i

is the Jacobian of Fi

with respect to L evaluated at L̂i. As mentioned at the end
of section III-A.2, this writing is possible since L, x and W
are independent.

2) docking configuration update: Let X =
(x1, . . . ,xi, . . . ,xn)T be the column vector composed
of all sensors docking positions. Since x̂	i = xi(q̂), we note
X	 the a priori positions of sensors. The difference between
X⊕ and X	 is used to update the docking configuration:

q̂⊕ = q̂	 + Kq(X̂⊕ − X̂)

and the Kalman gain is:

Kq = Vq	JT
q .(JqVq	JT

q + V⊕
xi

)−1

With Jq = dxi(q)
dq

∣∣∣
q̂	

is the Jacobian of xi(q) with respect to

q evaluated at q̂	.
3) Batch update versus sequential update: We can remark

that all updates are done in a batch way, that is all measures
are concatenated in a single vector. The reason is that in our
case, each measure vector (sensor perceptions P or sensor
positions X) is not independent element by element. However,
for a large number of sensors and a large number of matching
couples for each sensor, a sequential update would be prefer-
able for computational complexity reasons. It can always be
done by diagonalizing the covariance matrix of the measures
as shown in [1].

D. Under-determined cases
A docking pattern Li does not always fully determine a

sensor position. For instance if the embedded sensor detects
lines and the docking pattern is made of one line only, one
degree of freedom is missing: the localization of the docking
configuration with respect to the docking pattern is under-
determined. It is important to notice that the working out
presented above manages these cases since it uses the current
final configuration of the trajectory as a prior estimation of the
docking configuration.

IV. NONHOLONOMIC TRAJECTORY DEFORMATION

Now that we have presented how to compute the desired
docking configuration, we present how to deform the planned
trajectory toward the docking configuration.

A method has been presented in [6] that reactively deforms
a trajectory for a nonholonomic system in order to avoid
obstacles detected by on-board sensors along the motion. The
method is based on the minimization of a trajectory potential
that increases when the trajectory gets closer to obstacles.

We present here the principle of this method and we show
how it can be used to reach a desired goal configuration.

A. Principle
A nonholonomic system of dimension n is defined by k < n

control vector fields X1,...,Xk over the configuration space C
of the system. An admissible trajectory q(s) is a mapping from
an interval [0, S] into the configuration space the derivative of
which is a linear combination of the control vector fields and
there exists a k-dimensional vector valued smooth mapping
u = (u1, ..., uk) from [0, S] into R such that:

∀s ∈ [0, S], q′(s) =
k∑

i=1

ui(s)Xi(q(s))

′ denotes the derivative w.r.t. s. The ui’s are the input functions
relative to trajectory q.

1) Direction of deformation: The nonholonomic trajectory
deformation method is based on the perturbation of the input
functions of the current trajectory q. Let the input perturbation
be defined as a k-dimensional vector valued smooth mapping
v = (v1, ..., vk) from [0, S] into R so that replacing each ui

by ui + τvi, where τ is a small positive real number, yields a
new admissible trajectory:

u ← u + τv (9)
q(s) ← q(s) + τη(s) (10)

η(s) is called the direction of deformation and verifies:

η′(s) = A(s)η(s) + B(s)v(s) (11)

where A(s) and B(s) are the following n× n matrices:

A(s) =
k∑

i=1

ui(s)
∂Xi

∂q
(q(s)) B(s) = (X1(q(s)), . . . , Xk(q(s)))

2) Choice of input perturbation: The input perturbation
v is restricted over a finite-dimensional subset of functions.
For that, we define e1, ..., ep (p > n), a set of smooth
linearly independent vector-valued functions 3 of dimension
k, defined over [0, S] and we let the input perturbation be a
linear combination of these input functions:

v(s) =
p∑

i=1

λiei(s) (12)

For each of these functions, let Ei(s) be the solution of
system (11) with initial condition η0 = 0 and with ei(s)
as input. Since system (11) is linear in v, the direction of

3truncated Fourier series are used

deformation η corresponding to v is the linear combination of
solutions Ei

η(s) =
p∑

i=1

λiEi(s) (13)

The direction of deformation is thus completely determined
by vector λ. Now we present how to choose vector λ so that
the deformed trajectory moves away from obstacles.

3) Trajectory Potential: We define a potential field U over
the configuration space, decreasing when the distance between
the robot and the obstacles increases. From this potential field,
we define a potential field over the space of trajectories by
integration of the configuration space potential value:

V =
∫ S

0

U(γ(s))ds

The variation of the potential induced by the input pertur-
bation is given by:

∆V =
∫ S

0

∂U

∂q
(q(s))T η(s)ds

=
p∑

i=1

λi

∫ S

0

∂U

∂q
(q(s))T Ei(s)ds

The choice of λ that makes the variation of the potential
negative is consequently:

λi = −
∫ S

0

∂U

∂q
(q(s))T Ei(s)ds (14)

B. Boundary conditions
In the context of obstacle avoidance, we generally deform

a portion of the trajectory only, on which a collision has been
found. In order to keep the feasibility of the whole trajectory,
two boundary conditions are imposed:

η(0) = 0 (15)
η(S) = 0 (16)

The first constraint is always satisfied since each Ei satis-
fies (15).

The second constraint (16), imposing the last configuration
is unchanged, is in fact a linear constraint over vector λ:

Lλ = 0 (17)

Where L = (E1(S), · · · ,Ep(S)) the n×p-matrix (p > n) the
columns of which are the Ei(S)’s.

In the context of docking, we want the deformed trajec-
tory to reach configuration qdock that has been computed
previously (section III). We note δdock ∈ C the difference
between the docking configuration and the last configuration
of the actual trajectory (δdock = qdock−q(S)). The boundary
condition in the context of docking is then:

Lλ = δdock (18)

We project the vector λ computed from equation (14) over
this subspace. We note L+ the pseudo-inverse of L. It is the
matrix verifying LL+L = Ip. Then we have:

λ̄ = L+δdock + (Ip − L+L)λ

the closest vector to λ that verifies equation (18).

V. EXPERIMENTAL RESULTS

A common scenario for a truck with a trailer is to park its
trailer along an unloading platform. That is the final position
of the trailer is defined relatively to the unloading platform.
We have reproduced this scenario with a robot towing a trailer.

The trailer is endowed with a laser range sensor. Following
the notation of section III-A.2, we define the docking pattern
as a set of landmarks L relative to this sensor. In this
experiment the landmarks are segments. The docking pattern
L can be composed of any number of segments li. In order to
be robust to occlusions, the matching algorithm of section III-
B treat segments as straight lines. In this experiment, the
docking pattern represents the shape of the unloading platform
as perceived by the sensor when the trailer is parked. It is
represented in figure 2.

Thus the inputs of the docking task are:
• a planned trajectory for the robot towards a goal config-

uration
• the docking pattern L.

A. The Unloading platform has been moved
Figure 5 illustrates the case where the unloading platform

has been moved and the map has not been updated. Moreover,
the shape of the unloading platform has changed: it is larger
than the docking pattern. The matching between the perception
and the docking pattern is robust to these perturbations and
the docking configuration is still defined relatively to the
unloading platform.

platform

dockq

dockq
docking

unloading platform
shifted and enlarged

initq

initq

unloading
pattern

Fig. 5. The position and the shape of the unloading platform have been
changed compared to the map of the environment. The unloading platform
has been shifted to the right and it has been enlarged by 0.2 meters. The
docking configuration is computed as the configuration where the docking
pattern best fits the unloading platform.

Quantitative results are very good in these experiments. The
error between the theoretical trailer position at the unloading
platform and the experimental position is about 5 centimeters.
The error is principally transversal to the robot and is mainly

due to the robot motion control law that converges slowly in
the transversal direction. The longitudinal error is less than 1
centimeter.

VI. CONCLUSION

We have presented a framework for sensor-based maneuvers
for nonholonomic mobile robots: the docking task. It consists
in defining a desired goal configuration of the robot relatively
to the environment using a docking pattern. Given a planned
trajectory, the docking task consists in following the trajec-
tory while avoiding obstacles and in reaching the docking
configuration: the configuration where sensor perception best
matches the docking pattern. We use a nonholonomic path
deformation method to make the planned trajectory reach the
docking configuration.

This framework is generic for any nonholonomic mobile
robot. Any number of sensors can be used, and docking
patterns can possibly not fully determine the docking con-
figuration.

It has been tested on a real robot with a trailer in a realistic
scenario using a laser range finder to detect the docking
pattern. An extension of this work would be to use a camera
as a sensor in order to dock with respect to an image pattern.

REFERENCES

[1] Y. Bar-Shalom and X.R. Li. Estimation and Tracking: Principles,
Techniques, and Software. Artech House, Incorporated, 1993.

[2] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servo-
ing in robotics. IEEE Trans. on Robotics and Automation, 8(3):313–326,
June 1992.

[3] E. Ferre and J.P. Laumond. An iterative diffusion algorithm for part
disassembly. In ICRA04, New Orleans, April 2004. IEEE.

[4] D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin. On
finding narrow passages with probabilistic roadmap planners. In P.K.
Agarwal et al., editors, Workshop on the Algorithmic Foundations of
Robotics, pages 141–154. A. K. Peters, 1998.

[5] S. A. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual
servo control. IEEE Trans. Robotics and Automation, 12(5):651–670,
October 1996.

[6] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation
for non-holonomic mobile robots. IEEE Transactions on Robotics,
20(6):967–977, December 2004.

[7] P. Morin and C. Samson. Practical stabilization of driftless systems on
lie groups: the transverse function approach. IEEE Trans. on Automatic
Control, 48(9):1496–1508, September 2003.

[8] C. Samson, M. Leborgne, and B. Espiau, editors. Robot Control: The
Task-function Approach. Oxford University Press, 1991.

[9] M. Seelinger, J.-D. Yoder, E.T. Baumgartner, and S.B. Skaar. High
precision visual control of mobile manipulators. IEEE Transactions on
Robotics and Automation, 18(6):957–965, Dec 2003.

[10] S.B. Skaar, I. Yalda-Mooshabad, and W.H. Brockman. Nonholonomic
camera-space manipulation. IEEE Transactions on Robotics and Au-
tomation, 8:464–479, August 1992.

[11] D. Tsakiris, P. Rives, and C. Samson. Applying visual servoing
techniques to control nonholonomic mobile robots. In Proceedings of
the International Conference on Intelligent Robots and Systems (IROS),
Grenoble, France, September 1997.

