
Fast Computation of Robot-Obstacle Interactions
in Nonholonomic Trajectory Deformation

Olivier Lefebvre, Florent Lamiraux and David Bonnafous
LAAS-CNRS,

7 avenue du Colonel Roche
Toulouse, France

{olefebvr,florent,dbonnafo}@laas.fr

Abstract— This paper deals with the optimization of Robot-
Obstacle interaction computations, in the context of non-
holonomic trajectory deformation for mobile robots. We first
recall the principle of the trajectory deformation and the
role of the potential field gradient in the configuration space.
The contribution of the paper is twofold. First we show that
the potential field gradient can be computed without any
closed-form expression of the potential function if this latter
depends only on the distance between the robot and the
obstacles. Then an algorithm to filter obstacles that have no
influence in Robot-Obstacle interactions is presented. This
algorithm takes advantage of the spatial coherence of the
planned trajectory, and has been evaluated by experiments
on mobile robot Hilare2 towing a trailer.

Fig. 1. Application of the trajectory deformation method to the mobile
robot Hilare 2 towing a trailer. light dots are obstacles detected by a laser
scanner. The robot is at the beginning of the planned trajectory on the
left. The trajectory is deformed in such a way that it avoids obstacles,
the kinematic constraints keep satisfied and the trajectory starts and end
at the same configurations before and after deformation.

I. INTRODUCTION

Autonomous navigation for multi-body nonholonomic
mobile robots in cluttered environments usually requires
two distinct steps. The first step consists in planning a
collision-free admissible trajectory given a map of the
environment and the second step consists in following this
trajectory. Imprecision of the map, localization errors and
unexpected obstacles however may make the second step
fail. For this reason, the trajectory following task needs to
be reactive to these perturbations.

Reactive motion in mobile robots has given rise to a lot
of work and a lot of methods have been proposed for simple
mobile robots without nonholonomic constraints [12], [4],
[2], [10]. Some of these methods have been extended to
simple nonholonomic mobile robots like unicycle or car-
like systems [6], [11].

Recently, we have proposed a generic method to reac-
tively deform a trajectory for a nonholonomic system in

order to avoid obstacles detected by on-board sensors along
the motion [8]. The method is based on the minimization
of a trajectory potential that increases when the trajectory
gets closer to obstacles. The approach is very generic
and has been successfully applied to complex truck-trailer
systems [7].

The method is based on the perturbation of the input
functions of the system along the current trajectory. These
functions are iteratively perturbed in such a way that:

1) the deformed trajectory gets away from obstacles,
2) the start and end configurations of the trajectory

remain the same and
3) the nonholonomic constraints keep satisfied along the

trajectory.
Figure 1 shows the result of the method applied to our

mobile robot Hilare 2 towing a trailer. Although points 2
and 3 above are well explained in previous papers [8], the
computation of the interactions between the obstacles and
the trajectory is the bottleneck of the method and can take
up to 80% of the computation time.

This paper deals with the computation of the interac-
tions between the obstacles and the trajectory within the
nonholonomic trajectory deformation method. The action
of the obstacles over the trajectory is defined by the integral
along the trajectory of the gradient of a potential function
over the configuration space. As the trajectory is discretized
and the potential function is generated by the obstacles,
the number of computations without optimization is the
product of the number of “sample configurations” along
the trajectory by the number of “obstacles”. If the obstacles
have a bounded distance of influence however, most of the
pairs “sample configuration - obstacle” have no effect.

The contribution of our paper is twofold. First we show
that the gradient of a configuration space potential field
based on the distance between the robot and the obstacles
can be computed without the closed-form expression of the
potential function. Secondly we propose an algorithm to
dramatically reduce the number of computations relative to
the interactions between the trajectory and the obstacles by
filtering the pairs sample configuration-obstacle that have
no effect.

The problem of filtering pairs of objects for distance
computation and collision avoidance has given rise to a lot
of work in the field of computational geometry [9], [13],
[3]. Our algorithm is based on spatial coherence (continuity

of the trajectory) and is significantly different from these
previous works. A related work can be found in [1], but it
does not deal with multi-body systems trajectories of any
shapes.

In Section II, we briefly recall the main components of
the trajectory deformation method. In Section III, we define
the configuration space potential field and we explain how
to simply compute the gradient. In Section IV, we de-
scribe an algorithm for pruning useless pairs configuration-
obstacle in the computation of the interactions between
the obstacles and the trajectory. Finally, in Section V we
give some experimental results that show the benefit of our
algorithm.

II. NONHOLONOMIC TRAJECTORY DEFORMATION
METHOD

A nonholonomic system of dimension n is defined by
k < n control vector fields X1,...,Xk over the configuration
space C of the system. An admissible trajectory γ is a
mapping from an interval [0, S] into the configuration
space, the derivative of which is a linear combination of
the control vector fields:

γ : [0, S] → C
s → γ(s)

and there exists k mappings u1,...,uk from [0, S] into R
such that:

∀s ∈ [0, S], γ′(s) =
k∑

i=1

ui(s)Xi(γ(s))

′ denotes the derivative w.r.t. s. The ui’s are the input
functions relative to trajectory γ.

A. Principle of the trajectory deformation method

In this section, we recall the key points of the trajectory
deformation method for nonholonomic systems. We refer
the reader to [8] for a precise description.

We define a potential field U over the configuration
space, decreasing when the distance between the robot and
the obstacles increases. Section III will give more details
about this potential field. From this potential field, we
define a potential field over the space of trajectories by
integration of the configuration space potential value:

V (γ) =
∫ S

0

U(γ(s))ds (1)

The nonholonomic trajectory deformation method is
based on the perturbation of the input functions of current
trajectory γ. The idea consists in iteratively determining k
mappings v1,...,vk from [0, S] into R in such a way that
replacing each ui by ui + τvi, where τ is a small positive
real number, yields a new admissible trajectory that:

1) starts and ends at the same configurations γ(0) and
γ(S),

2) has a lower potential value than the initial trajectory.
We denote by γτ the new trajectory of input functions
ui+τvi. Then, the trajectory deformation is asymptotically

robot

e 1 (q)

e 2 (q)

θ
y

x

r(

p(q

q)

)

q= (x,y,

obstacle

θ)

B(q)

Fig. 2. The gradient of a configuration space potential field depending
only on the distance between the robot and the obstacles is a function of
the vector ~OR linking the closest point on the obstacle and on the robot
and of the gradient of the position of the point of the robot coinciding
with R. The relative motion of R on the robot can thus be omitted.

defined by a vector valued mapping η from [0, S] into the
tangent configuration space (Rn to make it simple):

γτ = γ + τη + ε(τ)

where ε(τ) is a negligible term w.r.t. τ when τ tends toward
0.

The relation between input perturbations v = (v1, ..., vk)
and trajectory deformation η is given by the linearized
system about the initial trajectory.

The key point in the scope of this paper is that the
asymptotic variation of the trajectory potential value for
a given trajectory deformation η is given by the following
expression:

< dV (γ), η >=
∫ S

0

∂U

∂q
(γ(s))η(s)ds

where ∂U
∂q is the gradient of the configuration space poten-

tial field, that is the derivative of U w.r.t. each configuration
variable of the system. Expressed differently:

V (γτ) = V (γ) + τ

∫ S

0

∂U

∂q
(γ(s))η(s)ds + ε(τ)

In the general case, the computations of ∂U
∂q may be com-

plicated since we need to have a closed-form expression of
the potential function U . In the following section however,
we are going to show that if the potential value is a function
of the distance between the robot and the obstacles, we do
not need the closed-form expression of the configuration
space potential function.

III. POTENTIAL FIELD OVER THE CONFIGURATION
SPACE

We denote by W = R2 or R3 the workspace of the
robot. Given two compact subsets A and B of W , we call
distance between these subsets the following value:

d(A,B) = min
a∈A,b∈B

‖b− a‖ (2)

Let us consider a multi-body mobile robot composed of
nb bodies B1,...,Bnb

. Let us denote by Bi(q) ⊂ W the
volume occupied by body Bi in configuration q.

Let the environment contain no obstacles O1,...,Ono . We
consider a configuration space potential function depending
on the distances between obstacles and bodies of the robot
as follows:

U(q) =
nb∑
i=1

no∑
j=1

f(dij(q)) (3)

where:
dij(q) = d(Bi(q),Oj)

is the Euclidean distance between body i and obstacle j
when the robot is in configuration q and f is a decreasing
function. Let us point out that the nonholonomic constraints
have no influence on the potential function. The gradient
of this expression is thus:

∂U

∂q
(q) =

nb∑
i=1

no∑
j=1

f ′(dij(q))
∂dij

∂q
(q)

where f ′ denotes the derivative of f . We thus need to
compute the gradient of the distance between each pair
body-obstacle. For that, we denote by R(q) and O(q)
the closest points between body i in configuration q and
obstacle j:

dij(q) = ‖O(q)−R(q)‖

Thus, if T denotes the transpose of a vector,

∂dij

∂q
(q) =

(O(q)−R(q))T

‖O(q)−R(q)‖

(
∂O
∂q

(q)− ∂R
∂q

(q)
)

(4)

From this expression, it seems that the gradient of the
potential field requires the expression of the position of
O(q) and R(q) w.r.t. q. This expression is obviously
difficult to obtain since O(q) and R(q) move on the
robot and on the obstacle when q varies. The motion even
depends on the shapes of the body and of the obstacle
(Figure 2). However, we are going to show that the relative
motion of the closest point on the robot and on the obstacle
can be omitted.

Let us consider a reference frame
(B(q), e1(q), ..., ed(q)) attached to the body we are
considering. d = 2 or 3 is the dimension of the workspace.
Then R(q) =

∑d
l=1 ρl(q)el(q) where (ρ1(q), ..., ρd(q))

are the local coordinates of R(q) on the body and

∂R
∂q

(q) =
d∑

l=1

∂ρl

∂q
(q)el(q) +

d∑
l=1

ρl(q)
∂el(q)

∂q

This expression is in fact the law of composition of
motions. The first term of the sum is the relative motion
of R(q) on the body while the second term is the absolute
motion of the point of the body coinciding with R(q). The
relative motion of R(q) stays on the boundary of the body
and is therefore orthogonal to vector O(q)−R(q):

(O(q)−R(q))T
d∑

l=1

∂ρl

∂q
(q)el(q) = 0

Applying the same reasoning to ∂O
∂q (q), we notice that:

(O(q)−R(q))T ∂O
∂q

(q) = 0

since the obstacles are fixed and thus the motion of the
point coinciding with O on the obstacle is zero and the
relative velocity of O on the boundary of the obstacle is
orthogonal to vector O(q)−R(q).

Expression (4) thus becomes:

∂dij

∂q
(q) =

(R(q)−O(q))T

‖O(q)−R(q)‖
∂R∈body

∂q

where ∂R∈body

∂q =
∑d

l=1 ρl(q)∂el(q)
∂q is the absolute veloc-

ity induced by variations of q, of the point of the body
coinciding with R(q).

Therefore, computing the gradient of the configuration
space potential field does not require the closed-form
expression of the potential function. We only need to
know the closest points between each body of the robot
and each obstacle, the variation of the potential value
w.r.t. this distance and the velocities of a point of a body
implied by variations of the configuration variables. These
latter velocities are easy to compute as illustrated by the
following example.

Example: a robot in the plane

Let us consider a mobile robot in the plane composed
of one body and subject to the action of an obstacle,
represented in Figure 2. The configuration of the robot is
denoted by q = (x, y, θ). The potential generated by the
obstacle is given by the expression: U(q) = f(d(B(q),O))
where B(q) and O are the volumes in the workspace
occupied respectively by the robot in configuration q and
the obstacle.

If ρ1, ρ2 are the local coordinates of R in the local
reference frame (B(q), e1(q), e2(q)) of the robot, the
position of the point coinciding with R on the robot is
the following:

R∈body =
(

x + ρ1 cos θ − ρ2 sin θ
y + ρ1 sin θ + ρ2 cos θ

)
hence,

∂U

∂q
(q) =

f ′(d)

d

„
δ1, δ2,

δ2(ρ1 cos θ − ρ2 sin θ)
−δ1(ρ1 sin θ + ρ2 cos θ))

«
with O = (O1, O2)T , R = (R1, R2)T , δ1 = R1 − O1,

δ2 = R2 −O2 and d = d(B(q),O).

IV. OPTIMIZING ROBOT-OBSTACLE INTERACTION
COMPUTATIONS

In the previous section, we have explained how to
compute the gradient of the potential field generated by
an obstacle on a body of the robot when this potential
field depends on the distance between the body and the
obstacle. The reactive trajectory deformation approach we
have developed successively applies the four following
steps to the current discretized admissible trajectory:

1) given a set of obstacles detected by on-board sensors,
find the first collision on the trajectory,

2) choose an interval centered on the first collision and
not containing the current position of the robot,

3) compute the gradient of the configuration space
potential field along this interval,

4) apply the deformation process to get a new trajectory.
During steps 1 and 3, numerous computations need to be
performed: in the worst case, for each body of the robot,
each sample configuration along the discretized trajectory
needs to be checked for collision (step 1) or taken into
account for potential gradient calculation (step 3) with
each obstacle. We denote by ns the number of sample
configurations, no the number of obstacles detected and nb

the number of bodies of the robot. The complexity without
optimization is therefore equal to ns × no × nb.

In step 1 ns is proportional to the distance on which
collisions are checked on the current trajectory, starting
from the current robot position. In step 3, ns is proportional
to the length of the deformation interval. This number can
be very large if the discretization step of the trajectory
is very small as it is the case when navigating in very
cluttered environments.

In reactive obstacle avoidance, we usually define two
distances:

• a desired clearance to obstacles involved in the colli-
sion checking step,

• a distance of influence above which obstacles have no
influence on the trajectory, involved in the potential
gradient computation step.

To simplify notations, we will denote by ρinfl the
distance involved in each step, even though it can have
different values. This corresponds to:

• considering that the robot is in collision if the distance
between a body and an obstacle is lower than ρinfl

• imposing that function f in Equation (3) satisfies:
for any d ≥ ρinfl, f(d) = 0

With this reasonable constraint, each configuration along
the discretized trajectory is at a distance lower than ρinfl to
few obstacles. Therefore most pairs sample configuration -
obstacle give rise to no interaction.

In this section, we are going to present an algorithm that
enables us to prune most useless sample configuration -
obstacle pairs both in collision checking and potential field
gradient computation.

A. Principle of the Robot-Obstacle interaction filtering
algorithm

The principle of this algorithm consists in taking advan-
tage of the spatial coherence along the trajectory. Between
two successive sample configurations of the robot, the
distance between a body and an obstacle changes by less
than the maximum distance traveled by each point of the
body between both configurations.

This property enables us to update a lower bound of
the distance between a body and an obstacle without
recomputing the exact distance. Only obstacles the distance
lower bound of which is lower than ρinfl are taken into
account. We will show how to manage this list of distances
between obstacles and a body.

B. Lower bound of the distance between a body and an
obstacle

Let us consider two configurations q1 and q2 of the
robot. Let us define ϕi as the rigid-body transformation
moving any point of body Bi in configuration q1 to the
same point in configuration q2:

Bi(q2) = ϕi(Bi(q1))

and let us denote by ∆ an upper bound of the distance
traveled by the points of body Bi between configurations
q1 and q2:

for any R ∈ Bi(q1) ‖ϕi(R)−R‖ ≤ ∆

Then, we have the following property.
Property 1: For any compact subset O ⊂ W and for

any d1,
if

d(Bi(q1),O) ≥ d1

then
d(Bi(q2),O) ≥ max(d1 −∆, 0)

Proof: If d1 −∆ ≤ 0, the conclusion is obvious.
If d1 −∆ > 0, for any O ∈ O and any R1 ∈ Bi(q1),

d1 ≤ ‖R1 −O‖

For any O ∈ O and any R2 ∈ Bi(q2),

‖R2 −O‖ = ‖R2 − ϕ−1
i (R2) + ϕ−1

i (R2)−O‖
≥

∣∣‖R2 − ϕ−1
i (R2)‖ − ‖ϕ−1

i (R2)−O‖
∣∣

by triangular inequality. As ϕ−1
i (R2) ∈ Bi(q1),

d1 ≤ ‖ϕ−1
i (R2)−O‖

and by definition of ∆,

‖R2 − ϕ−1
i (R2)‖ ≤ ∆

Thus, as d1 > ∆,

‖R2 − ϕ−1
i (R2)‖ ≤ ‖ϕ−1

i (R2)−O‖

and

‖R2 −O‖ ≥ ‖ϕ−1
i (R2)−O‖ − ‖R2 − ϕ−1

i (R2)‖
≥ d1 −∆

Therefore, d(Bi(q2),O) ≥ d1 −∆.

This property is the core of our filtering algorithm. The
idea is to maintain for each body, a sorted list of lower
bounds of distances between obstacles and the body. When
the list is initialized, it contains exact distances to obstacles.
Then at each sample configuration qs, the list is updated
by subtracting the maximal traveled distance ∆ between
qs and qs+1 to each of its elements. That is, obstacles
getting further from the trajectory are treated as if they
were getting closer.

Lower bounds that reach ρinfl (and only these) have a
twofold consequence:

• they correspond to obstacles that might have an influ-
ence and as such, these obstacles are treated in Robot-
Obstacle interaction computations.

• their exact distance to the body is recomputed, and
they are re-inserted within the partially sorted list, in
order to maintain it sorted.

Algorithm : Robot obstacle interaction filtering

/* Initialization of lists */
s← 1
/* loop over bodies of the robot */
for i in {1, ..., nb} {

for j in {1, ..., no} {
/* compute distance to obstacle */
compute d(Bi(qs),Oj)
/* one array per body */
dist[j, i]← d(Bi(qs),Oj)

}
/* sort array using quick-sort algorithm */
quicksort(dist[., i])

}
/* loop over trajectory interval */
while (s ≤ smax /* last sample config */) {

/* loop over bodies of the robot */
for i in {1, ..., nb} {

l← 1;
while (dist[l, i] ≤ ρinfl) {

j ← index of l-th obstacle in list dist[l, i]
compute interaction between Oj and Bi

/* recompute exact distance to this obstacle*/
dist[l, i]← d(Bi,Oj)
l← l + 1

}
linfl ← l
/* sort first linfl elements of array of distances */
insertion_sort(dist[., i], linfl)
∆[i]← max dist traveled by Bi between qs and qs+1

for j in {1, ..., no} {
/* Subtract upper bound of traveled distance */
dist[j, i]← max(0, dist[j, i]−∆[i])

}
}
s← s + 1

}

TABLE I
ALGORITHM TO FILTER OBSTACLES THAT HAVE NO INTERACTION

WITH THE ROBOT, ALONG A TRAJECTORY.

The algorithm for a multi-body robot is described in
details in Table I. Figure 3 illustrates its principle for a
robot with a trailer. It presents the interactions between
obstacles and the trailer between two successive sample
configurations. The evolution of the list of distances high-
lights the following steps of the algorithm:

• Initialization of the list
• Subtraction of the upper bound of the traveled distance

∆
• Computation of exact distances to obstacles for lower

bounds lower than ρinfl

• Sort of this exact distances within the sorted list

V. EXPERIMENTAL RESULTS

We have implemented the algorithm presented in
Section IV to mobile robot Hilare2 towing a trailer. This
nonholonomic system of degree two benefits from the
nonholonomic trajectory deformation method presented

distance for
compute new

obstacles in

∆

d2

d3

d4d1

qs

qs+1

dn

dn

dn dn

dn

d4

decrement ofsorted list of distances

:::

d3
d2
d1

∆ sort list up to

 new d3

:::

:::
− ∆

− ∆

− ∆

− ∆

:::
 new d1
 new d2

− ∆
− ∆
− ∆

− ∆

d1

d3

::: :::
d4

 new d3
 new d2
 new d1

d4d4

d2

:::

− ∆

infl
ρ

infl

infl
ρ

ρ

ρ
infl

ρ
infl

o o

o

o

o

Fig. 3. Illustration of the filtering algorithm. Only interactions between
obstacles and the trailer are presented. ∆ is an upper bound of the distance
traveled by the points of the trailer. Distances to obstacles are computed
when the robot is at qs and stored in a sorted list. Each element of the
list is decreased by ∆. Exact distances to obstacles are then recomputed
for elements lower than ρinfl. New distances are eventually inserted in
the list in order to keep it sorted.

in Section II. However, since this robot evolves in very
cluttered environments, the time of computation of
Robot-Obstacle interactions can be very important in the
absence of optimization.

To evaluate the benefits of the optimization algorithm,
we have run several iterations of the trajectory deformation
process, with and without optimization, in the same envi-
ronment and on the same trajectory. To make sure that the
computations are exactly the same in both cases, we have
run the experiments in our simulation environment. The
robot is equipped with two laser scanners, the data of which
are simulated given the map of the environment and the
position of the robot. The trajectory discretized into 2500
sample configurations is represented in Figure 4. Table II
reports the average computation times for 15 iterations in
both cases. The unit of time is the millisecond. However,
times are over-estimated since simulation requires more
computations than real experiments. These figures have
value for comparison only.

From these experiments, we can notice that although the
optimization algorithm leads to new computations such as:

• distance between robot and obstacles,
• sorting an array in disorder: we use the quick sort

algorithm for this part, the complexity of which is
O(n log(n)),

• sorting a partially ordered array: we use the insertion
sort algorithm, the complexity of which is O(n2) on

Initial configuration

Fig. 4. The trajectory before and after applying the nonholonomic
trajectory deformation process. 15 iterations have been applied with and
without optimization of the Robot-Obstacle interaction computations. The
robot is at the beginning of the trajectory on the right.

random lists, but which is very efficient when a part
of the list is already sorted,

• upper bound of the traveled distance between two
configurations,

the overall time of computation is considerably reduced
with the filtering algorithm.

Robot “Collision Checking” “Potential Computation”
Time Time

no-optim optim no-optim optim
Hilare2 w/ trailer 1697 119 2552 413
Hilare2 636 20 1220 348

Deformation Computation Time
Hilare2 w/ trailer 2960
Hilare2 2000

TABLE II
COMPARISON OF TIME OF COMPUTATION OF ROBOT-OBSTACLES

INTERACTIONS, WITH AND WITHOUT THE OPTIMIZATION ALGORITHM.

The numerous experiments we have carried out on our
real robot since we have integrated the filtering algorithm
into the trajectory deformation scheme confirm the huge
gain in performance, in various type of environments and
for several deformation interval lengths.

VI. CONCLUSION

This paper deals with the computation of Robot-Obstacle
interactions in the context of nonholonomic trajectory
deformation for mobile robots. It is shown that the potential
field of the trajectory in the configuration space can be
computed without any closed-form expression.

An algorithm to optimize the computation of Robot-
Obstacles interactions is then presented. It takes advantage

of spatial coherence to filter obstacles outside an influence
zone around the robot. This algorithm can be applied to
multi-body systems and to obstacles of any shape.

We have carried out experiments with robot Hilare 2
towing a trailer to evaluate the performance of this
algorithm. Since the robot evolves in very cluttered
environments, both the number of sample configurations
and the number of obstacles are very large. Results show
that the Robot-Obstacles interaction processes are not the
bottleneck of the trajectory deformation method anymore.

Acknowledgment: This work has been partially sup-
ported by the European Project MOVIE (IST-2001-39250)
and by the CNRS interdisciplinary program ROBEA.

REFERENCES

[1] D. Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies.
PhD thesis, CUCS, Ithaca, 1992. Cornell Computer Science Tech-
nical Report 92-1275.

[2] O. Brock and O. Khatib. Real-time replanning in high dimensional
configuration spaces using sets of homotopic paths. In International
Conference on Robotics and Automation, pages 550–555, San Fran-
cisco, CA, April 2000. IEEE.

[3] E. Ferré and J.-P. Laumond. An iterative diffusion algorithm for
part disassembly. In IEEE International Conference on Robotics
and Automation, pages 3149–3154, New Orleans, Louisiana, April
2004.

[4] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach
to collision avoidance. IEEE Robotics and Automation Magazine,
4(1):23–33, March 1997.

[5] M. Kallmann and M. Mataric. Motion planning using dynamic
roadmaps. In IEEE International Conference on Robotics and
Automation, New Orleans, Louisiana, April 2004.

[6] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond. Dynamic
path modification for car-like nonholonomic mobile robots. In
International Conference on Robotics and Automation, pages 2920–
2925, Albuquerque, NM, April 1997. IEEE.

[7] F. Lamiraux, D. Bonnafous, and C. Van Geem. Control Problems
in Robotics, chapter Path Optimization for Nonholonomic Systems:
Application to Reactive Obstacle Avoidance and Path Planning,
pages 1–18. Springer, 2002.

[8] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path
deformation for nonholonomic mobile robots. to appear in the IEEE
Transactions on Robotics.

[9] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast distance
queries with rectangular swept sphere volumes. In International
Conference on Robotics and Automation, pages 3719–3726, San
Francisco, CA, April 2000. IEEE.

[10] J. Minguez and L. Montano. Nearness diagram (nd) navigation:
collision avoidance in troublesome scenarios. IEEE Transactions
on Robotics and Automation, 20(1):45–59, Feb 2004.

[11] J. Minguez, L. Montano, and J. Santos-Victor. Reactive navigation
for non-holonomic robots using the ego-kinematic space. In Interna-
tional Conference on Robotics and Automation, pages 3074–3080,
Washington D.C., May 2002. IEEE.

[12] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning
and control. In International Conference on Robotics and Automa-
tion, pages 802–807, Atlanta, GA, May 1993. IEEE.

[13] S. Redon, Y. Kim, M. Lin, and D. Manocha. Fast continuous
collision detection for articulated models. In G. Elber, N. Pa-
trikalakis, and P. Brunet, editors, Symposium on Solid Modelling
and Applications, 2004.

