Fast Computation of Robot-Obstacle Interactions in Nonholonomic Trajectory Deformation

Olivier Lefebvre, Florent Lamiraux, David Bonnafous

LAAS-CNRS, Toulouse, France

Motivation and context

 Navigation in cluttered environment for nonholonomic systems

- Reactive obstacle avoidance
 - poor localization and map imprecision
 - unexpected obstacles

- move away from obstacles
- keep nonholonomic constraints satisfied

- move away from obstacles
- keep nonholonomic constraints satisfied

- move away from obstacles
- keep nonholonomic constraints satisfied

- move away from obstacles
- keep nonholonomic constraints satisfied

- move away from obstacles
- keep nonholonomic constraints satisfied

How to compute a direction of deformation that moves away from obstacles?

How to compute a direction of deformation that moves away from obstacles?

Artificial potential fields over configuration space [Khatib 86]

$$U(\mathbf{q}(s)) = \frac{1}{d(\mathbf{q}(s))}$$

configurations close to obstacles have a higher potential

Potential of a trajectory

$$V(\mathbf{q}) = \int_0^S U(\mathbf{q}(s))ds$$

move away from obstacles <=> make the potential decrease

Potential of a trajectory

$$V(\mathbf{q}) = \int_0^S U(\mathbf{q}(s))ds$$

move away from obstacles <=> make the potential decrease

Gradient of the potential

$$dV = \int_0^S \frac{\partial U}{\partial \mathbf{q}}(\mathbf{q}(s))\eta(s)ds$$

compute $\eta(s)$ such that dV it is negative

Contribution

$$dV = \int_0^S \frac{\partial U}{\partial \mathbf{q}}(\mathbf{q}(s)) \eta(s) ds$$

Contribution

$$dV = \int_0^S \frac{\partial U}{\partial \mathbf{q}}(\mathbf{q}(s)) \eta(s) ds$$

 compute gradient of potential over configuration space without closed-form expression

Contribution

$$dV = \int_0^S \frac{\partial U}{\partial \mathbf{q}}(\mathbf{q}(s)) \eta(s) ds$$

- compute gradient of potential over configuration space without closed-form expression
- optimize computation over the trajectory using spacial coherence

Gradient of Potential

• $U(\mathbf{q})$ is a function of distance to obstacles:

$$U(\mathbf{q}) = \sum_{i=1}^{n_b} \sum_{j=1}^{n_o} f(d_{ij}(\mathbf{q}))$$

Gradient of Potential

We need the gradient of the potential of a configuration

Gradient of Potential

derivative of distance:

$$\frac{\partial d_{ij}}{\partial \mathbf{q}}(\mathbf{q}) = \frac{(\mathbf{O}(\mathbf{q}) - \mathbf{R}(\mathbf{q}))^T}{\|\mathbf{O}(\mathbf{q}) - \mathbf{R}(\mathbf{q})\|} \left(\frac{\partial \mathbf{O}}{\partial \mathbf{q}}(\mathbf{q}) - \frac{\partial \mathbf{R}}{\partial \mathbf{q}}(\mathbf{q})\right)$$

$$\mathbf{R}(\mathbf{q}) = \sum_{l=1}^{d} \rho_l(\mathbf{q}) \mathbf{e}_l(\mathbf{q})$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{q}}(\mathbf{q}) = \sum_{l=1}^{d} \frac{\partial \rho_l}{\partial \mathbf{q}}(\mathbf{q}) \mathbf{e}_l(\mathbf{q}) + \leftarrow \text{motion of R(q) on the robot}$$

$$\sum_{l=1}^{d} \rho_l(\mathbf{q}) \frac{\partial \mathbf{e}_l(\mathbf{q})}{\partial \mathbf{q}}$$

← absolute motion of coincinding point

motion of R(q) is orthogonal to

$$(\mathbf{O}(\mathbf{q}) - \mathbf{R}(\mathbf{q}))^T$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{q}}(\mathbf{q}) = \sum_{l=1}^{d} \frac{\partial \rho_l}{\partial \mathbf{q}}(\mathbf{q}) \mathbf{e}_l(\mathbf{q}) + \qquad \leftarrow \text{motion of R(q) on the robot}$$

$$\sum_{l=1}^{d} \rho_l(\mathbf{q}) \frac{\partial \mathbf{e}_l(\mathbf{q})}{\partial \mathbf{q}}$$

← absolute motion of coincinding point

• motion of R(q) is orthogonal to:

$$(\mathbf{O}(\mathbf{q}) - \mathbf{R}(\mathbf{q}))^T$$

and we need to compute:

$$\frac{\partial d_{ij}}{\partial \mathbf{q}}(\mathbf{q}) = \frac{(\mathbf{O}(\mathbf{q}) - \mathbf{R}(\mathbf{q}))^T}{\|\mathbf{O}(\mathbf{q}) - \mathbf{R}(\mathbf{q})\|} \left(\frac{\partial \mathbf{O}}{\partial \mathbf{q}}(\mathbf{q}) - \frac{\partial \mathbf{R}}{\partial \mathbf{q}}(\mathbf{q}) \right)$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{q}}(\mathbf{q}) = \sum_{l=1}^{d} \frac{\partial \rho_l}{\partial \mathbf{q}}(\mathbf{q}) \mathbf{e}_l(\mathbf{q}) + \leftarrow \text{motion of R(q) on the robot}$$

$$\sum_{l=1}^{d} \rho_l(\mathbf{q}) \frac{\partial \mathbf{e}_l(\mathbf{q})}{\partial \mathbf{q}}$$

 $\sum_{l}^{d} \rho_l(\mathbf{q}) \frac{\partial \mathbf{e}_l(\mathbf{q})}{\partial \mathbf{q}} \quad \leftarrow \text{absolute motion of coincinding point}$

- same reasoning with obstacles
- fixed obstacles

$$\frac{\partial \mathbf{O}}{\partial \mathbf{q}}(\mathbf{q}) = \sum_{l=1}^{d} \frac{\partial \rho_l}{\partial \mathbf{q}}(\mathbf{q}) \mathbf{e}_l(\mathbf{q}) + \leftarrow \text{motion of O(q) on the obstacle}$$

$$\sum_{l=1}^{d} \rho_l(\mathbf{q}) \frac{\partial \mathbf{e}_l(\mathbf{q})}{\partial \mathbf{q}}$$

← absolute motion of coincinding point

Gradient of configuration space potential field

 No closed-form required if it is a function of distance to obstacles

ullet compute $rac{\partial \mathbf{R}_{\in body}}{\partial \mathbf{q}}$ only

$$dV = \int_0^S \frac{\partial U}{\partial \mathbf{q}}(\mathbf{q}(s))\eta(s)ds$$

$$dV = \int_0^S \frac{\partial U}{\partial \mathbf{q}}(\mathbf{q}(s))\eta(s)ds$$

Computations are done for all configurations along the planned trajectory

How to reduce the complexity?

Given a sensor perception and a discretized trajectory

1. compute index of collision (n_{conf} * n_{obstacles})

each configuration is tested against collision with each obstacle

2. compute the gradient of the potential field $(n_{interval} * n_{obstacles})$

gradient of potential created by every obstacle is computed for each configuration

Useless Robot-Obstacle pairs

Most of the robot-obstacle pairs are useless:

collision : minimal clearance distance ρ

collision tunnel for body trailer swept volume = $w_{trailer} + 2\rho$

Useless Robot-Obstacle pairs

Most of the robot-obstacle pairs are useless:

gradient of the potential field : maximal distance of influence ρ

influence distance tunnel swept volume = $w_{trailer} + 2\rho$

Filter using spatial coherence

- spatial coherence:
 - obstacles "far" from q_s are still "far" from q_{s+1}

maximal distance traveled by points of body B_i between $\mathbf{q_s}$ and $\mathbf{q_{s+1}}: \Delta$ distance between 2 compact subsets : $d(\mathcal{A},\mathcal{B}) = \min_{a \in \mathcal{A}, b \in \mathcal{B}} \|b-a\|$

Filter using spatial coherence

• spatial coherence: example with the trailer

$$d(\mathcal{B}_i(\mathbf{q}_1), \mathcal{O}) \ge d_1 \implies d(\mathcal{B}_i(\mathbf{q}_2), \mathcal{O}) \ge \max(d_1 - \Delta, 0)$$

- compute a sorted list of distances to obstacles

distance $< \rho_{\text{infl}} => \text{usefull robot-obstacle pair}$

obstacles in ρ_{infl}

- compute a sorted list of distances to obstacles

distance $< \rho_{\text{infl}} => \text{usefull robot-obstacle pair}$

- between two configurations

subtract Δ to all elements distance $< \rho =>$ recompute exact distance insert it in the list

obstacles in ρ_{infl}

- compute a sorted list of distances to obstacles

distance $< \rho_{\text{infl}} => \text{usefull robot-obstacle pair}$

- between two configurations

subtract Δ to all elements distance $< \rho =>$ recompute exact distance insert it in the list

- manage a sorted list of lower bounds

 $d_{n_{\Omega}}$ $d_{n_0 - \Delta}$ $d_{n_0-\Delta}$ $d_{n_0-\Delta}$ d4 new d1 d3 new d2 ρ_{infl} P_{infl} d4 $d4 - \Delta$ $d4 - \Delta$ dl d3new d3 new d3 $-\Delta$ d2 new d2

decrement of Δ

sorted list of distances

sort list up to ρ_{infl}

new d1

compute new distance for obstacles in ρ_{infl}

Experimental Results

- Implementation on several robots:
 - hilare2 (with trailer), cycab (car-like), dala (rover)
- Time of computation gain:
 - collision checking: divided by 10
 - gradient of potential: divided by 6

Conclusion

- Gradient of potential in configuration space:
 - no closed-form expression if the potential is a function of the distance to obstacles
- Filter useless robot-obstacle interactions pairs:
 - maximum influence distance of interactions
 - spatial coherence
- Future work: complexity of the filtering algorithm